# Formation Processes of IMBHs

Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University

www.astro.lu.se

### Stellar mass Intermediate mass



**SMBH** 

## Stellar clusters play an important role

M [solar mass]



# Consider eight channels

- I. Direct formation from very massive stars
- 2. Runaway collisions forming massive stars
- 3. Bag-of-cores variation on channel (2)
- 4. Merger of stellar-mass BHs within clusters
- 5. Accretion from GMCs and AGN accretion discs
- 6. Gas infall (into nuclear stellar cluster)
- 7. Accretion of gas onto BH in a stellar cluster
- 8. Build up of BHs involving dark matter

### I. Direct formation from very massive stars



Introduce concept of useless black holes (UBH) Recall Tom Abel talk on Sunday

(Heger et al. 2003)

### 2. Runaway collisions forming massive stars

Cross section is given by

$$\sigma = \pi R_{min}^2 \left[ 1 + \frac{2G(M_1 + M_2)}{R_{min}V_\infty^2} \right]$$

Timescale for a given star to undergo an encounter is

$$\tau_{enc} \sim 10^{11} yr \left(\frac{10^5/pc^3}{n}\right) \cdot \left(\frac{M_{\odot}}{M}\right) \cdot \left(\frac{R_{\odot}}{R_{min}}\right) \cdot \left(\frac{V_{\infty}}{10 km/s}\right)$$

**BIG IDEA:** in order to have a runaway merger, we need

 $\tau_{enc} \ll \tau_{evol}$  What are the required cluster properties?

### Cluster properties giving runaway mergers



(Portegies Zwart et al. 2004; Freitag, Gürkan & Rasio 2006)

> But massive stars emit hefty winds which lead to significant mass loss for solar metallicity.



3. Making a bag-of-cores via runaway collisions **KEY IDEA:** if collisional timescale if less than thermal timescale, then collisions occur whilst previous collision product is still *puffed up*.

(Dale & Davies 2006)



### QUESTION: how does such a bag-of-cores evolve?

4. Merger of stellar-mass BHs within clusters

**Clusters are factories** for producing exotic objects produced via dynamical encounters, including binaries containing two stellar-mass BHs.

$$\tau_{enc} \sim 10^{11} yr \left(\frac{10^5/pc^3}{n}\right) \cdot \left(\frac{M_{\odot}}{M}\right) \cdot \left(\frac{R_{\odot}}{R_{min}}\right) \cdot \left(\frac{V_{\infty}}{10 km/s}\right)$$

These binaries can then harden, spiral together by emission of gravitational radiation and merge.

$$t_{\rm GW} = 3.151 \times 10^{17} \text{ yr } g(e) \left(\frac{a}{\rm AU}\right)^4 \left(\frac{M_{\odot}}{m_1}\right) \left(\frac{M_{\odot}}{m_2}\right) \left(\frac{M_{\odot}}{m_1 + m_2}\right)$$

$$g(e) = \left(1 - e^2\right)^{7/2} \left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right)$$
 (Peters 1964)

# **Merging BHs receive kicks** due to asymmetry of GR emission.

$$V_{\text{kick}} = 1.20 \times 10^4 \eta^2 \sqrt{1 - 4\eta} \left(1 - 0.93\eta\right) \text{ km/s}$$
$$\eta = \frac{q}{(1 + q^2)} \qquad \text{(Gonzalez et al. 2007)}$$

So merged BHs typically ejected from clusters as:

 $V_{\rm kick} \gg V_{\rm esc}$  i.e. merge once then out

Modelling of BHs in globular clusters shows that BH binaries can be ejected by both mergers and scattering.

(e.g. Miller & Hamilton 2002; Moody & Sigurdsson 2009; see also Morscher et al. 2014)

See also Meagan Morscher talk on Monday afternoon

#### Number of Milky Way globulars retaining IMBHs



(Holley-Bockelman et al. 2008)

### 5. Accretion from GMCs and accretion discs



(Hoyle & Lyttleton 1939; Bondi & Hoyle 1944)

 $\dot{M}_{\rm BH} = \frac{4\pi G^2 M^2 \rho}{\left(c_{\rm s}^2 + v_{\infty}^2\right)^{3/2}}$ 

(Edgar 2004)

Can reach high accretion rates by going slowly through cold, dense gas, but note Eddington limit (and more...).

(e.g. Krolik 2004; Miller & Colbert 2004)

Can use computer modelling to measure accretion rate.

(e.g. Park & Ricotti 2011, 2012, 2013)



(Park & Ricotti 2013)

### XRBs from IMBH accretion in GMCs



(Krueger & Davies, in prep.)

But disc IMBHs produced within young rich clusters might be visible (but not so many of them: it depends on one's runaway optimism). Accretion within AGN discs

Probably a better place to build up mass of BHs.

Stellar masses can grow by accretion.

(e.g. Syer et al. 1991; Artymowicz et al. 1993)

Can also produce supermassive stars.

(Goodman & Tan 2004)

Timescale to grow by accretion is given by

$$t_{\rm acc} \sim \left(\frac{H}{R}\right)^4 \frac{M_{\rm smbh}}{\Sigma_{\rm disc} R^2} \frac{M_{\rm smbh}}{m_{\star}} \frac{1}{\Omega} \qquad \text{(Syer et al. 1991)}$$

(IM)BH masses can grow by accretion. (e.g. McKernan et al. 2012, 2014)

See also Bence Kocsis talk on Thursday

### 6. BH formation from gas infall (into NSCs)



6a. Quasistars

(e.g. Dotan, Rossi & Shaviv 2011)

**KEY IDEA for 6b:** Addition of gas into nuclear stellar cluster leads to significant contraction in core and increase in cluster velocity dispersion. Binaries can no longer support cluster which undergoes core collapse.

## How an I(S)MBH may form:

Tight binaries merge but are retained to go on to merge with other objects thus building up a massive IMBH

IMBH will reach a mass of around 10<sup>5</sup> solar masses from stellar-mass BHs, NSs, and WDs within cluster.

Eddington-limited growth onto moderately spinning black hole would see growth to  $\sim 10^9$  solar masses by  $z \sim 7$ .

(Davies, Miller & Bellovary 2011)

Currently working with Lucio Mayer et al. on gas inflow and formation of stellar clusters. 7. Accretion of gas inside a stellar cluster

**KEY IDEA:** low-mass BH fed by infalling gas inside a stellar cluster. High opacity in gas traps accretion radiation. Random motions prevent formation of accretion disc around BH.



(Alexander & Natarajan 2014)

See also Tal Alexander talk from Sunday

Note: this requires a minimum gas density for photon advection to occur. 8. Build up of BHs involving dark matter **INTRIGUING IDEA:** if a small fraction of dark matter is very strongly-interacting, one can get gravothermal core collapse and form seed black holes in the centre of a halo at very high redshifts which then give time to form 10<sup>9</sup> solar-mass BHs by z ~7.

(Pollack, Spergel & Steinhardt 2015)

# Questions to ponder

- I. How metal poor is metal poor?
- 2. Bag-of-cores evolution?
- 3. BH mass as function of stellar mass?
- 4. Size of stellar-mass BH natal kicks?
- 5. Structure of accretion flows: Eddington+/-?
- 6. Gas inflow histories into clusters/nuclei?
- 7. Other consequences/limits on sticky DM?
- 8. How often does IM(BH) lead to SM(BH)?